

SC1272 Mirror System Design with Freeform Surfaces

José Sasián Wyant College of Optical Sciences University of Arizona

SAMPLE PAGES ONLY. DOES NOT INCLUDE COMPLETE COURSE NOTES USED IN CLASS.

Table of aberrations of a plane symmetric systems

Aberration terms of a plane symmetric system	
First group	
$W_{\infty\infty0}$	Piston
Second group	
$W_{01001}\vec{i}\cdot\vec{ ho}$	Field displacement
$W_{10010}\vec{i}\cdot\vec{H}$	Linear Piston
Warna 0 · 0	Defocus
$W_{11100}\vec{H}\cdot\vec{\rho}$	Magnification
$W_{2000}\vec{H}\cdot\vec{H}$	Quadratic Piston
Third group	
$W_{02002} \left(\vec{i} \cdot \vec{\rho} \right)^2$	Uniform astigmatism
$W_{11011} \left(\vec{i} \cdot \vec{H} \right) \left(\vec{i} \cdot \vec{\rho} ight)$	Anamorphic distortion
$W_{ m 20020}\left(ec{i}\cdotec{H} ight)^2$	Quadratic piston
$W_{03001} \left(\vec{i} \cdot \vec{ ho} ight) \left(\vec{ ho} \cdot \vec{ ho} ight)$	Uniform coma
$W_{12101} \left(\vec{i} \cdot \vec{ ho} ight) \left(\vec{H} \cdot \vec{ ho} ight)$	Linear astigmatism
$W_{\rm 12010}\left(\vec{i}\cdot\vec{H} ight)\left(\vec{ ho}\cdot\vec{ ho} ight)$	Field tilt
$W_{21001}\left(\vec{i}\cdot\vec{ ho} ight)\left(\vec{H}\cdot\vec{H} ight)$	Quadratic distortion I
$W_{21110}\left(\vec{i}\cdot\vec{H}\right)\left(\vec{H}\cdot\vec{\rho}\right)$	Quadratic distortion II
$W_{30010}\left(ec{i}\cdotec{H} ight)\left(ec{H}\cdotec{H} ight)$	Cubic piston
$W_{ m 04000} \left(ec{ ho} \cdot ec{ ho} ight)^2$	Spherical aberration
$W_{\rm l3100} \left(\vec{H} \cdot \vec{ ho} ight) (\vec{ ho} \cdot \vec{ ho})$	Linear coma
$W_{22200}\left(ec{H}\cdotec{ ho} ight)^2$	Quadratic astigmatism
$W_{\rm 22000} \left(\vec{H} \cdot \vec{H} \right) \left(\vec{\rho} \cdot \vec{\rho} \right)$	Field curvature
$W_{31100}\left(\vec{H}\cdot\vec{H} ight)\left(\vec{H}\cdot\vec{ ho} ight)$	Cubic distortion
$W_{40000}\left(ec{H}\cdotec{H} ight)^2$	Quartic piston

$$W\left(\vec{i},\vec{H},\vec{\rho}\right) = \sum_{\substack{k,m,n,p,q \\ 2m+n+q, \\ n,p,q}}^{\infty} W_{\substack{2k+n+p, \\ 2m+n+q, \\ n,p,q}} \left(\vec{H}\cdot\vec{H}\right)^{k} \left(\vec{\rho}\cdot\vec{\rho}\right)^{m} \left(\vec{H}\cdot\vec{\rho}\right)^{n} \left(\vec{i}\cdot\vec{H}\right)^{p} \left(\vec{i}\cdot\vec{\rho}\right)^{q}$$

$$\left(\vec{H}\cdot\vec{H}\right) \ \left(\vec{H}\cdot\vec{
ho}\right) \ \left(\vec{
ho}\cdot\vec{
ho}\right)$$

 $\left(\vec{i}\cdot\vec{H}
ight)^2 \quad \left(\vec{i}\cdot\vec{
ho}
ight)^2 \quad \left(\vec{i}\cdot\vec{H}
ight)\left(\vec{i}\cdot\vec{
ho}
ight)$

 $\left(\vec{i} \cdot \vec{H}
ight) \quad \left(\vec{i} \cdot \vec{
ho}
ight)$

Linear Astigmatism

Ad-hoc freeform surface

Sag(X,Y)=Conic+polynomial

Polynomial aspheric coefficients directly relate to aberration correction

 $z(x, y) = A_1 y^2 + A_2 x^2 y + A_3 y^3 + A_4 x^4 + A_5 x^2 y^2 + A_6 y^4 \dots$

Astigmatism, coma, spherical aberration

Three mirror anastigmatic system I

Copyright (Jose Sasián) All Rights Reserved.

Three mirror anastigmatic system II

